\qquad
Prime Time Lesson 3.2 pages 46-47

Find the prime factorization of 36 . Expanded Form= \qquad Exponential Form = \qquad

Use the prime factorization of 36 to find all of its factors.

Find a multiple of 36 . \qquad What does the prime factorization of this multiple have in common with the prime factorization of 36 ?

Write the prime factorization of each number below using exponents.
a. $10=$ \qquad b. $100=$ \qquad c. $1,000=$
d. $10,000=$ \qquad

The numbers 10; 100; 1,000; 10,000 can be written as powers of 10.

$$
10=10^{1} \quad 100=10^{2} \quad 1,000=10^{3} \quad 10,000=10^{4}
$$

How can you use the prime factorization of the powers of 10 to find the prime factorization of 270,000?

The prime factorization of a number is $2^{4} \times 3^{2} \times 5$. What is the number? \qquad Is $2^{2} \times 3$ a factor of the number? \qquad Explain

Mari claims that $2^{5} \times 3^{2} \times 5$ is a multiple of the number. Is she correct? Explain.

