A.

1. Place the following fractions on the number line above.
$\begin{array}{llllllllllllllll}\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & \frac{4}{4} & \frac{5}{4} & \frac{6}{4} & \frac{7}{4} & \frac{8}{4} & \frac{9}{4} & \frac{0}{4} & -\frac{1}{4} & -\frac{2}{4} & -\frac{3}{4} & -\frac{4}{4} & -\frac{5}{4}\end{array}$
2. Which of the fractions can be written as mixed numbers? Show.

B1) Mark and label the following numbers on the new number line.
B.

B2. Which of these numbers can be written as improper fractions? Show.

C1. What is the opposite of $1 / 2$?

C2. What is the opposite of the opposite of $1 / 2$?

C3. What is the opposite of 0 ?
D1. What numbers have an absolute value of 1 ?
D2. How many numbers have an absolute value of $5 / 4$? What are they?
D3. How many numbers have an absolute value of 0 ?

Read pages 62-64.
Make a foldable or use notebook paper to give examples and write a definition for the following vocabulary:

Mixed Number, Improper Fraction, Opposite, Absolute Value, \& Rational Numbers

Mixed Number: Example $1 \frac{1}{2}$ because it has a whole number and it has a fraction.
Improper Fraction: Example 3/2 because it the numerator (top number) is the same as or larger than denominator (bottom number).

The mixed number $11 / 2$ is equivalent to the improper fraction $\mathbf{3 / 2}$. There is really nothing 'improper" about 3/2. In math, we often use the improper form of a fraction.

On the number line below, 5 and -5 are the same distance from 0 but in opposite directions. Therefore, 5 and -5 are opposites. The opposite of 5 is -5 . The opposite of -5 is 5 . Similarly, the opposite of $2 \frac{1}{2}$ is $-2 \frac{1}{2}$, and the opposite of $-2 \frac{1}{2}$ is $2 \frac{1}{2}$.

The absolute value of a number is its distance from 0 on the number line. Numbers that are the same distance from 0 have the same absolute value. The absolute value of $2 \frac{1}{2}$ and the absolute value of $-2 \frac{1}{2}$ are both $2 \frac{1}{2}$.
You can express the absolute value of a number two ways without words.

Absolute Value Bars

$$
\begin{gathered}
\left|2 \frac{1}{2}\right|=2 \frac{1}{2} \\
\left|-2 \frac{1}{2}\right|=2 \frac{1}{2}
\end{gathered}
$$

Calculator Notation
$\operatorname{abs}\left(2 \frac{1}{2}\right)=2 \frac{1}{2}$
$\operatorname{abs}\left(-2 \frac{1}{2}\right)=2 \frac{1}{2}$

- What is the opposite of $-\frac{2}{3}$? What is the opposite of $\frac{2}{3}$?
- What is the absolute value of $-\frac{2}{3}$? What is the absolute value of $\frac{2}{3}$?

Zero, whole numbers, fractions, and their opposites are rational numbers. The numbers $-\frac{9}{5},-3,0, \frac{2}{3}$, and $2 \frac{1}{3}$ are all rational numbers.

Negative numbers can also be improper fractions. Improper fractions have an absolute value greater than or equal to 1. Both $\frac{7}{5}$ and $-\frac{7}{5}$ are improper fractions. They can be written as $1 \frac{2}{5}$ and $-1 \frac{2}{5}$.

