Comparing Bits and Pieces Lesson 1.3 pages 16-19

- B1. How can you use the halves strip to fold eighths?
- B3. What fraction strips can you make if you start with a thirds strip?

Name three other fractions show here that are equivalent to $^{2}/_{3}$.

Name another fraction equivalent to $\frac{2}{3}$.

The distance between the mark labeled 0 and the mark labeled $\frac{3}{5}$ is $\frac{3}{5}$ Page 18/D1

What is the distance between each pair of points?

- **a.** 0 and $\frac{7}{10}$ **b.** $\frac{3}{5}$ and $\frac{7}{10}$ **c.** $\frac{7}{10}$ and 1 **d.** $\frac{3}{5}$ and 1

What is the distance between each pair of points?

- **a.** 0 and $\frac{1}{3}$
- **b.** $\frac{1}{3}$ and $\frac{1}{2}$

c. $\frac{1}{3}$ and $\frac{2}{3}$

d. $\frac{1}{2}$ and $\frac{2}{3}$

e. $\frac{1}{2}$ and 1

f. $\frac{2}{3}$ and 1

E1) Name five fractions equivalent to $\frac{4}{12}$.

Name five fractions that are near, but not equivalent to $\frac{4}{12}$.

IF finished early: Did You Know?

Hieroglyphic inscriptions show that, with the exception of $\frac{2}{3}$, Egyptian mathematicians only used fractions with 1 in the numerator. These fractions, such as $\frac{1}{2}$ and $\frac{1}{16}$, are *unit fractions*. The Egyptians expressed other fractions as sums of unit fractions. For example, they expressed the fraction $\frac{5}{12}$ as $\frac{1}{4} + \frac{1}{6}$ (as shown in the second and third pieces of the hieroglyphics below).

Check with fraction strips to see that $\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$. You studied unit fractions in earlier grades. How do unit fractions appear on fraction strips? On a number line?